Prostatic Acid Phosphatase Is Required for the Antinociceptive Effects of Thiamine and Benfotiamine
نویسندگان
چکیده
Thiamine (Vitamin B1) is an essential vitamin that must be obtained from the diet for proper neurological function. At higher doses, thiamine and benfotiamine (S-benzoylthiamine O-monophosphate, BT)-a phosphorylated derivative of thiamine-have antinociceptive effects in animals and humans, although how these compounds inhibit pain is unknown. Here, we found that Prostatic acid phosphatase (PAP, ACPP) can dephosphorylate BT in vitro, in dorsal root ganglia (DRG) neurons and in primary-afferent axon terminals in the dorsal spinal cord. The dephosphorylated product S-benzoylthiamine (S-BT) then decomposes to O-benzoylthiamine (O-BT) and to thiamine in a pH-dependent manner, independent of additional enzymes. This unique reaction mechanism reveals that BT only requires a phosphatase for conversion to thiamine. However, we found that the antinociceptive effects of BT, thiamine monophosphate (TMP) and thiamine-a compound that is not phosphorylated-were entirely dependent on PAP at the spinal level. Moreover, pharmacokinetic studies with wild-type and Pap(-/-) mice revealed that PAP is not required for the conversion of BT to thiamine in vivo. Taken together, our study highlights an obligatory role for PAP in the antinociceptive effects of thiamine and phosphorylated thiamine analogs, and suggests a novel phosphatase-independent function for PAP.
منابع مشابه
P-10: Effects of Cadmium on Reproductive Enzymes of Blood and Reproductive Tissues in Adult Male Mice
Background: Heavy metals such as cadmium (Cd2+) are natural components of the Earth's crust which can not be degraded or destroyed. Industrial, mining and agricultural activities, particularly the excessive use of phosphate fertilizers, have led to high levels of cadmium contamination at many locations worldwide. Some toxic effects of cadmium are due to its inhibition of various enzyme sys...
متن کاملProstatic Acid Phosphatase Is an Ectonucleotidase and Suppresses Pain by Generating Adenosine
Thiamine monophosphatase (TMPase, also known as fluoride-resistant acid phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of prostatic acid phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found ...
متن کاملThe multifaceted therapeutic potential of benfotiamine.
Thiamine, known as vitamin B(1), plays an essential role in energy metabolism. Benfotiamine (S-benzoylthiamine O-monophoshate) is a synthetic S-acyl derivative of thiamine. Once absorbed, benfotiamine is dephosphorylated by ecto-alkaline phosphatase to lipid-soluble S-benzoylthiamine. Transketolase is an enzyme that directs the precursors of advanced glycation end products (AGEs) to pentose pho...
متن کاملBenfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives
BACKGROUND Lipid-soluble thiamine precursors have a much higher bioavailability than genuine thiamine and therefore are more suitable for therapeutic purposes. Benfotiamine (S-benzoylthiamine O-monophosphate), an amphiphilic S-acyl thiamine derivative, prevents the progression of diabetic complications, probably by increasing tissue levels of thiamine diphosphate and so enhancing transketolase ...
متن کاملCharacterization of Ectonucleotidases in Nociceptive Circuits
Thiamine monophosphatase (TMPase, also known as fluoride-resistant acid phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of prostatic acid phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found ...
متن کامل